Additional Fibonacci-Bernoulli relations

نویسندگان

چکیده

We continue our study on relationships between Fibonacci (Lucas) numbers and Bernoulli polynomials. The derivations of results are based functional equations for the respective generating functions, which in case combinations hyperbolic functions. Special cases some corollaries will highlight interesting aspects findings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tiling Proofs of Some Fibonacci-lucas Relations

We provide tiling proofs for some relations between Fibonacci and Lucas numbers, as requested by Benjamin and Quinn in their text, Proofs that Really Count. Extending our arguments yields Gibonacci generalizations of these identities.

متن کامل

Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials

In the paper, the authors recall some known determinantal expressions in terms of the Hessenberg determinants for the Bernoulli numbers and polynomials, find alternative determinantal expressions in terms of the Hessenberg determinants for the Bernoulli numbers and polynomials, and present several new recurrence relations for the Bernoulli numbers and polynomials.

متن کامل

Some Relations Between Generalized Fibonacci and Catalan Numbers

In a recent paper Aleksandar Cvetkovi c, Predrag Rajkovi c and Miloš Ivkovi c proved that for the Catalan numbers Cn the Hankel determinants of the sequence Cn þ Cnþ1 are Fibonacci numbers. Their proof depends on special properties of the corresponding orthogonal polynomials. In this paper we give a generalization of their result by other methods in order to give more insight into the situation...

متن کامل

APPROXIMATIONS OF STANDARD EQUIVALENCE RELATIONS AND BERNOULLI PERCOLATION AT pu

La notion de relation d’équivalence standard hyperfinie (i.e. réunion croissante de sous-relations standards finies) joue un rôle fondamental en théorie de l’équivalence orbitale. Plus généralement, on peut considérer la notion d’approximation d’une relation d’équivalence mesurée standardR, i.e. la possibilité d’écrireR comme réunion croissante d’une suite de sous-relations d’équivalence standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ?????????? ?? ???????????

سال: 2022

ISSN: ['2664-5009', '2664-4991']

DOI: https://doi.org/10.15421/242208